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Abstract
It is well known that the Schrödinger equation is equivalent to the wave
equation for conservative bound quantum systems. Consequently, the motion
of such a system is represented—from a mathematical point of view—by the
motion of the characteristic surface of the wave equation. In this paper we
present a demonstration of the periodic motion of the characteristic surface. It
results that the normal curves of the characteristic surface are periodic solutions
of the Hamilton–Jacobi equation written for the same system. This leads to
a direct connection between the periodic solutions of the Hamilton–Jacobi
equation and the wave properties of the system. The constants of motion
corresponding to the above periodic solutions of the Hamilton–Jacobi equation
are identical to the eigenvalues of the Schrödinger equation. These properties
are proved without any approximation and they are valid for all the values of
the principal quantum number.

PACS numbers: 02.30.Jr, 02.40.Yy

1. Introduction

It is well known that the classical and quantum treatments of discrete conservative systems lead,
mathematically, to waves, which are associated with the motion of these systems. The waves
associated with the classical motion are studied, for example, in [1, 2]. On the other hand,
in the quantum approach, the Schrödinger equation itself is equivalent to the wave equation
in the case of conservative systems. A natural question appears: what is the connection
between the two waves? In this paper we show that this connection results from a parallel
analysis of the same system, using the quantum Schrödinger and the classical Hamilton–Jacobi
equations respectively.

We present the wave properties of the characteristic surfaces and curves of the system.
This paper is intended as a contribution to ‘mathematical’ physics rather than to ‘naturalistic’
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physics, as these words are interpreted by Synge in [1]. That is, the curves and surfaces that are
considered in this paper are viewed only as mathematical objects, and are void of any physical
interpretation. However, these mathematical objects prove to be useful tools for calculating
the energetic eigenvalues of the systems studied [3–9].

The equations are written in the international system.

2. Initial hypotheses

We shall analyse a discrete system composed of N mobile points (electrons) and N ′ fixed
points (nuclei). The Cartesian coordinates of the electrons are xa, ya, za , where a takes values
between 1 and N. Our analysis is made in the space R3N of the electron coordinates, which
are denoted by qj (where q1 = x1, q2 = y1, q3 = z1, . . . , q3N = zN ), j taking values between
1 and 3N . We consider the following initial hypotheses:

(h1) The system is closed and conservative (i.e. the total energy, denoted by E, is constant
and the potential energy, denoted by U, does not depend explicitly on time).

(h2) The potential and total energies have real negative values (i.e. the system is in a
bound state). We remark that this is a natural assumption, which is satisfied by systems
formed of atoms and molecules in conservative bound states. Indeed, for such systems the
negative potential energy due to the interaction between electrons and nuclei is dominant in
the expression for the potential energy of the system (see, for example, [10, 11]).

(h3) The behaviour of the system is completely described by the Schrödinger equation

−ih̄
∂�

∂t
− h̄2

2m

∑
j

∂2�

∂q2
j

+ U� = 0 (1)

where �, m, t and i are, respectively, the wavefunction, the electron mass, the time and the
imaginary constant, while h̄ is the normalized Planck constant (h̄ = h/2π).

According to the hypothesis (h3), the wavefunction of a conservative system is of the form
� = �(q, t, E, c) (see [12], p 330), where the total energy E and c = (c1, c2, . . . , c3N−1)

are the eigenvalues of the constants of motion. These eigenvalues have discrete values which
depend on the quantum numbers of the system, according to the relation

cj = cj (nj ) (2)

where nj is the quantum number which corresponds to the constant of motion with eigenvalue
cj . The number of quantum numbers is equal to the number of constants of motion, and to
the number of coordinates of the system. We briefly recall the theory leading to these facts.

In the case of a hydrogenoid system (for N = 1), there are three constants of motion:
the energy, orbital momentum and its projection on the z axis. The corresponding quantum
numbers are, respectively, the principal, azimuthal and magnetic orbital. In the expression of
the wavefunction, the quantum numbers enter explicitly, while the constants of motion enter
implicitly, because they are functions of the three quantum numbers.

For a general atomic system with N electrons, the wavefunction � is a function of N
hydrogenoid wavefunctions, using the approximation of the atomic orbitals (see [10, 13, 14]).
Since each hydrogenoid wavefunction depends (explicitly) on three quantum numbers, and
(implicitly) on three constants of motion, it follows that � depends on 3N quantum numbers,
corresponding to 3N constants of motion.

The case of a molecule with N ′ nuclei and N electrons is similar. Indeed, the linear
combination of atomic orbitals (LCAO) approximation [11] shows that the wavefunction of
the molecule is a function of N atomic wavefunctions, each of them corresponding to three
constants of motion, and the same conclusion follows.
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(h4) The relativistic and magnetic effects are neglected.
(h5) The nuclei are fixed on average positions and their motion is neglected.
We recall that the nucleus of an atom has a periodic motion with respect to a fixed point

(the centre of mass), while each of the nuclei of a molecule has a vibratory motion with respect
to a well-defined fixed point (see [10, 11]). These fixed points are called average positions.

Since the system is conservative, the Schrödinger equation can be solved using separation
of variables [12]:

� = �0 exp(−iEt/h̄) (3)

where �0 = �0(q, E, c) is the time-independent wavefunction, which is a complex-valued
function satisfying:

− h̄2

2m

∑
j

∂2�0

∂q2
j

+ (U − E)�0 = 0. (4)

It is well known that for conservative systems, equation (1) is equivalent to the system
which comprises equation (3) and the wave equation∑

j

∂2�

∂q2
j

− 1

v2
w

∂2�

∂t2
= 0 (5)

where

vw = ±|E|/
√

2m(E − U). (6)

Consequently, the behaviour of the system is described by the wave equation.
Mathematically, the motion of the wave described by equation (5) is completely determined
by the motion of its characteristic surface [15–17], the latter having the significance of a wave
surface [15]. We analyse the motion of this wave in the classically allowed (CA) domain
(where E > U ), corresponding to the real values of vw, given by equation (6).

The characteristic surface of equation (5) is given by the following equation [15–18]:

χ(q, t) = 0 (7)

where χ is called the characteristic function. It is a single-valued function which satisfies the
characteristic equation:

∑
j

(
∂χ

∂qj

)2

− 1

v2
w

(
∂χ

∂t

)2

= 0. (8)

The characteristic surface is denoted by � and is defined in the space R3N of coordinates,
corresponding to a fixed value of time in (7).

In the space R3N+1 of coordinates and time, the surface given by equation (7) is a conoid
[15–17, 19], usually called the characteristic conoid.

In virtue of the theory [15], an equation of the form F
(

∂u
∂q1

, . . . , ∂u
∂qs

, ∂u
∂t

) = 0 for which
∂u
∂t

can be written explicitly in terms of the other partial derivatives, has a solution of the form
u = u(q, t, c′) + c′

0, where c′ = (c′
1, c

′
2, . . . , c

′
s) are the constants of the system, which belong

to a continuous real domain, and c′
0 is an integration constant, which will be chosen to be zero.

Consequently, the characteristic function is of the form

χ = χ(q, t, c′) (9)

where c′ = (c′
1, c

′
2, . . . , c

′
3N). Since the characteristic surface is an intrinsic mathematical

element of the system described by the wave equation, the constants which enter in the
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characteristic function are constants of motion of the system, and we assume that the following
relations are valid:

c′
j = cj for 1 � j � 3N − 1 and c′

3N = E (10)

χ = χ(q, t, E, c). (11)

The assumption (10) can be made because χ is a solution of an equation of first grade and the
constants c′ in (9) belong to a continuous real domain which includes the eigenvalues c and E
of the Schrödinger equation.

3. Properties of the characteristic curves and surfaces

Equation (8) has the following solution:

χ(q, t, E, c) = sin k[f (q,E, c) ∓ |E|t] (12)

where k is a real constant and f (q,E, c) is a single-valued function (the complete integral)
which verifies the time-independent Hamilton–Jacobi equation

∑
j

(
∂f

∂qj

)2

+ 2m(U − E) = 0. (13)

We limit our analysis to the case corresponding to the plus sign in equation (6) and the
minus sign in equation (12). The case of a minus sign in equation (6) and a plus sign in
equation (12) corresponds to a set of characteristic surfaces moving in the opposite direction,
as we will show later. The two choices are symmetric, and there is no loss of generality in our
choice.

From (7) and (12) it follows that the equation of the characteristic surface is

f (q,E, c) = |E|t − pπ/k (14)

where p is an integer. The family of surfaces associated with the classical motion by
the Hamilton–Jacobi equation, written for the same system, has the following similar
equation [2]:

f (q,E, c) = κ (15)

where κ is a variable parameter. This yields the following properties:

Property 1. The family of characteristic surfaces of the wave equation is the same as the
family of surfaces associated with the classical motion by the Hamilton–Jacobi equation, and
corresponding to the constants c and E.

Property 2. The normal curves to the � surfaces are the C trajectories resulting from the
Hamilton–Jacobi equation and corresponding to the constants c and E.

Property 3. The characteristic surfaces and the C trajectories of the system are situated
inside the CA domain.

These properties are derived from the corresponding properties of the Hamilton–Jacobi
equation [2, 20].

In virtue of the theory [2, 20], the C trajectories depend on 6N constants: c =
(c1, c2, . . . , c3N−1), E and d = (d1, d2, . . . , d3N), where dj = ∂f (q, c, E)/∂cj for j =
1, 2, . . . , 3N − 1 and d3N = −t0, t0 being the initial time.

The characteristic � surface has the following properties:
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Property 4. Two surfaces, �1 and �2, that correspond to the same values of the constants c
and E, and have, respectively, the equations f (q,E, c) = κ1 and f (q,E, c) = κ2 are either
non-intersecting (when κ1 �= κ2) or identical (when κ1 = κ2). In other words, at most one
characteristic surface passes through a point of the CA domain.

Proof. If �1 and �2 have a common point q, then f (q,E, c) = κ1 = κ2 and the property
follows. �

Property 5. If the moving � surface passes at the moment t0 through a given surface �0 and
at a later time t1 it intersects again the surface �0, then at time t1 it passes exactly through
the surface �0, moving in the same sense.

Proof. In virtue of property 4, the � surface passes again exactly through its initial position
�0. On the other hand, by (14) we have df = |E|dt , resulting that the � surface moves only
in the sense which the function f increases, along a given C curve. As these values are fixed
on the CA domain, it follows that the sense of motion of the � surface is the same, anytime
when it passes through the fixed surface �0, and the property follows. �

Property 6. The velocity of an arbitrary point of the surface � which moves on a C trajectory
is equal to vw, given by equation (6).

Proof. The coordinates of a point P ∈ � ∩ C are functions q = q(s) of the parameter s, the
distance along the C trajectory. The s values are assigned to each point of the curve C, and
by convention, the sense of increasing of s is the same as the sense of increasing of f . The
following relations are valid:

df

ds
= |E| dt

ds
(16)

df

ds
=

√√√√∑
j

(
∂f

∂qj

)2

=
√

2m(E − U). (17)

The velocity of the point P follows from (6), (16) and (17) (recalling that we consider the case
corresponding to the plus sign in (6)):

ds

dt
= vw (18)

and the property is demonstrated. �

Since the constants of motion E and c are fixed, we will omit them from the notation and
write f (q) = f (q,E, c). Since f is determined up to an arbitrary constant, we choose the
following initial condition:

f (q) = 0 for t = 0. (19)

We will see in the proof of property 8 that the function f is bounded.
When an arbitrary point P ∈ �, moves on the corresponding C trajectory in the sense

of the increasing of f and s (in the sense of motion of a classical point), we say that the �

surface moves in forward direction.

Property 7. The � surface always moves in the forward direction.

Proof. In virtue of equation (14) the surface moves in the sense of increasing of f . On the
other hand, by convention, df/ds > 0 and the property results. �

The analysis of the case corresponding to the minus sign in (6) and plus in (12) shows
that there is another characteristic surface that moves in the opposite direction.
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4. The periodicity of the system described by the wave equation

The next periodicity result is to be expected, since the behaviour of the system is described by
the wave equation and a wave is always periodical.

Property 8. The motion of the surface � is periodical, and the C trajectories are closed
curves.

Proof. Let P0 be a fixed point on the C trajectory, corresponding to f = 0 and t = 0, and
let P be a point moving along C together with the surface �. Taking into account (14) and
integrating (17) between P0 and P, we find that at any time t before the surface crosses the
initial position, the point P is situated on the surface � having the equation

f (q) = |E|t =
∫ P

P0

√
2m(E − U) ds. (20)

If the surface � having equation (20) intersects again its initial position (having the
equation f (q) = 0), then property 5 implies that the surface � passes exactly through the
initial position, moving in the same sense. Letting τw be the minimal time after which the �

surface intersects itself, it follows that the motion of the surface � is periodical of period τw,
and that the C trajectories are closed. We will show that this is the case, proving thus the claim
of the proposition.

Indeed, assume by contradiction that the moving surface � never intersects its initial
position. In virtue of equation (20), the surface � passes through distinct positions in the CA
domain, corresponding to different values of the time t. Since it moves with positive velocity
(property 6), it follows that in a time T the surface � scans a volume of the CA domain, whose
measure is given by V (T ) = ∫ T

0 S�(t)vw(t) dt , where S�(t) is the area of the � surface at
time t. We will show briefly that the product S�vw is bounded below along the trajectory C. It
follows that the volume V is unbounded in time, contradicting the fact that the CA domain has
finite volume for the system in discussion (because the total energy of the system is negative
and the CA domain is bounded by the surface having the equation E = U ). This contradiction
would prove the claim.

To finish the proof, it remains to show that the product S�vw is bounded below
along the C trajectory. We limit our analysis to the case of atomic systems, the case
of molecular systems being similar. Since a qualitative analysis suffices, we can use the
approximation of atomic orbitals [10, 13, 14], which leads to an exact value of the total
angular moment, and to a total energy within 2% of the experimental values. In virtue of this
approximation we have �0(q, E, c) = ψ01(x1, y1, z1, n1, l1,m1) ψ02(x2, y2, z2, n2, l2,m2) . . .

ψ0N(xN, yN, zN, nN, lN ,mN) where ψ0a(xa, ya, za, na, la,ma) is the wavefunction of the
atomic orbital of the electron a. This wavefunction depends only on the coordinates of
the electron a, and of the quantum numbers corresponding to the state of the electron a (the
principal quantum number na , the azimuthal quantum number la and the magnetic orbital
quantum number ma).

By this approximation, one can assume that the motion of the electron a takes place in
the averaged field of the other electrons, and that the state of the electron a is represented by
the wavefunction ψ0a(xa, ya, za, na, la,ma), which obeys the equation

− h̄2

2m
	aψ0a + [Ua(xa, ya, za) − Ea]ψ0a = 0 (21)

where Ea is the energy of the electron a and 	a is the Laplace operator in which the
differentiation is made with respect to the coordinates of the electron a. The potential energy
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Ua(xa, ya, za) is the sum of a term due to the interaction between the electron a and the
nucleus, and a term averaging the interaction of the electron a with the other electrons. The
time-dependent wavefunction of the electron a satisfies the following equation:

−ih̄
∂ψa

∂t
− h̄2

2m
	aψa + Uaψa = 0. (22)

In virtue of the theory from section 2, this equation is equivalent to

	aψa − 1

v2
wa

∂2ψa

∂t2
= 0 (23)

where

vwa = ±|Ea|/
√

2m(Ea − Ua). (24)

The characteristic surface and its normal curve, corresponding to equation (23), are denoted,
respectively by �a and Ca .

By the approximation of the atomic orbitals, the states of the electrons and the motion
along the Ca trajectories associated with these states, are separated. It follows that with
good approximation, the projections of the � surface and of the C trajectory on the space of
coordinates of the electron a, are, respectively, the �a surface and the Ca trajectory. But the
properties of the �a surface and of the Ca trajectory can be exactly determined, since they
are the same as those for hydrogenoid systems [1]. In particular, the size of the surface �a

is comparable to the size of the CA domain for the reduced system containing the electron a,
and the velocity vwa is bounded below (the Ca trajectory is elliptical for the reduced system).

It follows that the area of the � surface and the value vw are bounded below by some
constant depending on the size of the CA domain. This finishes the proof. �

From the proof of property 8, it follows that the function f is bounded. Indeed, we have
shown that the surface � moves periodically, with a period τw, and from equation (20) it
follows that 0 � f (q) < fM , where

fM = |E| · τw. (25)

The equation of the characteristic surface can now be written explicitly as

f (q) = |E|t − p|E|τw for pτw � t < (p + 1)τw (26)

which is seen to agree with equation (14).
We emphasize that the motion of the wave represented by the Schrödinger equation, as

well as the motion of a classical point on the C trajectory, has only mathematical significance.
The connection between the two motions can be described as follows.

A point P on the C trajectory moving together with the characteristic surface of the wave
equation has velocity vw. On the other hand, the velocity of a classical point moving on the
same trajectory is given by the equation E = U + mv2/2, whence

v = ±
√

2(E − U)/m. (27)

From equations (6) and (27) it follows that

vvw = |E|/m. (28)

It is worth noting that our approach is fundamentally different from the approaches
based on the semiclassical approximation. While the semiclassical approaches are based
on the correspondence between the quantum and classical solutions, for very high values of
the principal quantum number (when the well-known semiclassical approximation holds), our
approach does not use any approximation, and it is valid for all values of the principal quantum
number.
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5. An example

To illustrate the practical applications of our wave model, we apply the theory developed so far
to the fundamental state of helium-like systems (He, Li+, Be2+, B3+ and so on). These systems
are composed of a nucleus and two electrons, and 3N = 6. The six constants of motion of
the electrons a, in the approximation of the atomic orbitals, are the energy, orbital momentum
and its projection on the z axis, and are denoted, respectively, by Ea, pθa and pθza , where
a = 1, 2. The corresponding quantum numbers are, respectively, the principal, azimuthal and
magnetic orbitals, denoted by na, la and ma . For the fundamental state, the values la and ma

are zero.
To calculate the energetic eigenvalues for such systems, we proceed by finding the normal

curves Ca corresponding to the constants of motion given above.
The equations of motion of the electrons, which are equivalent to the Hamilton–Jacobi

equation [2, 20], in a Cartesian system of coordinates with the origin at the nucleus, are

− C1Zr̄a

r3
a

+
C1(r̄a − r̄b)

|r̄a − r̄b|3 = m
d2r̄a

dt2
with a, b = 1, 2 and a �= b (29)

where Z is the order number of the nucleus, m is the electron mass, r̄a is the position vector of
the electron a and C1 is a constant given by the relation

C1 = e2

4πε0
. (30)

Here e and ε0 are the electron charge and the vacuum permittivity, respectively.
The system has the following solution [3]:

r̄1 = −r̄2 (31)

r̄1 · k̄ = r̄2 · k̄ = 0 (32)

v̄1 = −v̄2 (33)

where ī, j̄ , k̄ are the versors of the Cartesian system of coordinates, while v̄1 and v̄2 are the
electron velocities. According to equation (32), the motion takes place in the xy plane.

The system (29) is solved using polar coordinates with centre at the nucleus. Let ra, θa ,
for a = 1, 2, denote the polar coordinates of the two electrons. Elementary calculations
lead to two symmetrical elliptic periodic trajectories (for a = 1, 2), which have the following
parametric equations:

dra

dt
= ± 1

mra

√
−2Eamra

2 + 2

(
Z − 1

4

)
mC1ra − pθa

2 (34)

dθa

dt
= pθa

mra
2

(35)

where the total energy and angular momentum of the electron a are given by

−Ea = −C1
(
Z − 1

4

)
ra

+
mva

2

2
(36)

pθa = mra
2 dθa

dt
= const. (37)

In these relations all the symbols denoting energies represent positive quantities and the signs
are written explicitly.
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Table 1. Theoretical and experimental normalized values of the total energy of some atoms and
ions with the same structure [3].

Z 2 3 4 5 6 7 8

System He Li+ Be2+ B3+ C4+ N5+ O6+

E/EH 5.833 14.667 27.500 44.333 65.167 90.000 118.833
Eexp/EH 5.798 14.556 27.306 44.058 64.815 89.579 118.353

In recent papers [3, 6], we have shown that if the trajectory Ca corresponds to an energy
equal to that resulting from the Schrödinger equation, then this trajectory satisfies the Bohr
quantization relation. Applied to the present case, this leads to the relation∮

Ca

mv̄a ds̄a = nah with na = 1, 2 (38)

where h is the Planck constant, ds̄a is the infinitesimal length along the closed curve Ca .
Equation (38) leads to the following expression for the absolute value of the total energy:

E = 2Ea = 2EH

n2
a

Z∗2 (39)

where

Z∗ = Z − 1

4
(40)

and

EH = mC2
1

2h̄2 . (41)

The fundamental state corresponds to n1 = n2 = 1. The curves Ca which correspond
to these states are characterized by negligible values of the angular momentum, and have
eccentricity very close to unity. After correcting the expression for the energy to take into
account the spin interaction energy calculated by Gryzinski [21], we obtain [3]

E = 2EH

k1n2
a

Z∗2 (42)

where k1 is a correction coefficient which depends on Z∗ and it is given by the relation

k1 =
(

1 − 1

12Z∗

)−1

. (43)

The experimental values of the energy, denoted by Eexp, are obtained by summing the
two ionization energies for helium, and by summing the last two ionization energies for the
other systems.

The comparison between the theoretical and experimental energetic values for helium
and for the ions with the same structure is presented in table 1. The experimental ionization
energies are taken from [22].

The same calculation model is applied in previous papers [3–5, 9] to analyse many other
systems, which differ in geometry and complexity. For example, we treat the atoms Li, Be,
B, C, N, O, the ions with the same structure, and the molecules H2, Li2, Be2, B2, C2, N2, LiH,
BeH, BH, CH. The agreement between the theoretical and experimental data (which are taken
from well-known books) is of the same order of magnitude as in the present example.

We intend to apply this model to yet more complex systems in future papers.
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6. Conclusions

We have presented an ab initio study of the wave properties of conservative bound systems,
resulting from the equivalence between the Schrödinger and wave equations. We have proved
that the characteristic surface of the wave equation has a periodic motion and its normal curves
are closed. Moreover, these normal curves are identical to the periodic trajectories resulting
from the Hamilton–Jacobi equation written for the same system. We conclude that to every
conservative bounded physical system we can attach a periodical solution of the Hamilton–
Jacobi equation that corresponds to the same constants of motion as those resulting from the
Schrödinger equation. The theory presented in this paper can be used as a mathematical basis
for a wave model for conservative bound systems, a simple example of which we gave in the
previous section.
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